
■ Five Questions to ask a DATA.
(i) What has happened? (Descriptive Studies)
(ii) What will happen? (Predictive Studies).
(iii) is it true or false? (Inferential Studies)
(iv) How it is working? (Pattern recognisation or Cluster Analysis)
(v) (Anomaly Detection) is it weird?

In general, most of the data-driven studies are conducted to understand the nature of
various characteristics within a population. These studies encompass pure data analysis
as well as statistical analysis of data obtained from the population. Insights derived from
the analysis are used to explain the nature of these characteristics within the population
and to inform policy development / making.
Any data-oriented study can be broadly classified into the following types:

1. Descriptive Analysis (these answer to a general questions such as ”What has hap-
pened?”)

2. Predictive Analysis (these answer to a general questions such as ”What will hap-
pen?”)

3. Inferential Studies (these answer to a general questions such as

a) What is the value of ? (estimation)

b) Is the given statement true? (hypothesis testing)

4. Anomaly Detection (these answer to a general questions such as ”is it wired ?”)(eg.
detecting fraudulent financial transaction)

5. Looking for patterns (these answer to a general questions such as ”How is it orga-
nized?”)

Generally, the data is provided or it has to be collected.
Types of Data Collection are:

1. Complete Enumeration (e.g., Census).

2. Sample Survey (taking a part of the population into the study).

3. Collecting Data from Secondary Sources (government publications, different web-
sites).

In reality,data falls into two broad types, namely, unstructed data and structured data.

• Unstructed Data: data which are not expressed in a row-column format. Examples
include audio clips, video clips, etc.

• Structured Data: data which are expressed in a row-column format. Examples
Data of age , gender, income of 10 people

In practice, a structured dataset contains observations on several variables. For example,
a dataset of socio-economic surveys may include values such as age, gender, monthly
income, monthly expenditure, and educational quality of 1000 people. Typically, it looks
like:

1



Sl.No. Age Gen Monthly income Monthly Expenditure Qualification

1 24 F 20k 12k HS
2 31 M 70k 50k Graduation
. . . . . .
. . . . . .

1000 45 M 90k 75k Post Graduation

It is clearly evident that the above dataset contains observations on 5 characteristics
(variables) of the population. Hence, this is called a Multivariate Dataset. Therefore,
any study out of the 5 types of studies mentioned above should include all the variables at
a time. When the data analysis is carried out with more than 2 variables at a time, it is
called ”Multivariate Data Analysis.” It may again be noted that studies on multivariate
data will also fall into one or many of the above 5 types of studies.

When Multivariate Data Analysis (MDA) involves or takes into account the proba-
bility distribution of more than one variable or the joint probability distribution of more
than one variable, then it is called Multivariate Statistical Data Analysis (MSDA) .

In ’Applied Multivariate Statistical Data Analysis’ (MVSDA), we consider the follow-
ing:

1. Dimensionality Reduction: Situations often arise when the number of variables in
the dataset is quite large. Processing data with large dimensions becomes tedious
and difficult to interpret. Therefore, there is no other way but to reduce the di-
mension of the dataset for effective analysis and interpretation of the data. The
dimension of a dataset should be reduced in such a way that the information con-
tained in the original dataset is not lost. We perform this task using Principal
Component Analysis. Factor Analysis is also considered as a dimension reduction
technique, although its primary usefulness is in explaining the covariance (correla-
tion) structure of a group of variables.

2. Cluster Analysis: Here, the journey starts with the set of observations or objects
and ends with obtaining one or more groups of objects where objects within a group
are similar and objects between the groups are dissimilar. For example, grouping
movies in a video repository.

3. Discriminant Analysis or Classification: In this type of study, we are given a set of
multivariate observations, and we are also told from how many population groups
they are coming from. Here, our task is to develop a discriminant rule which
discriminates observations from different groups. Secondly, we use that rule to
classify a new observation in the system to either of the known population groups
or classes. For example, classification of emails as spam or non-spam.

4. Testing equality of Mean Vectors of Several Multivariate Populations: This is done
using a technique called MANOVA (Multivariate Analysis of Variance). Few more
inferential problems, such as estimating mean vectors and variance-covariance ma-
trices, and different tests on those, is also undertaken here.

5. The studies also extend to finding correlations between two groups of variables; this
is called ’Canonical Correlation Analysis.’

NEEDS:
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• Linear Algebra: To carry out the above studies, we should have a good under-
standing of vectors and matrices.

• Software: We would also use software like R, Python, and other open-source
menu-driven solutions to demonstrate.

A typical multivariate data, say with p variables, can be represented as follows:

The following matrix represents: −→


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp


This matrix, also called a Data Matrix, has each column representing observations on

a specific variable. The above matrix has the order n× p, where there are n observations
on each of the p variables.

The same can also be represented as: −→


x11 x21 . . . xp1

x12 x22 . . . xp2
...

...
...

x1n x2n . . . xpn


n×p

It may be noted that each column represents observations on each variable on n
individuals , and each row represents an observation of a population unit for all the
variables.
Hence, we may call the rows above observational vectors.
Since we have to deal with data matrices and observational vectors, we should have a
proper understanding of vector and matrix algebra.

Here is a quick recap:

• A vector is an ordered tuple of numbers. For example, (x, y) is a vector in 2-D
plane where the first value indicates position on the horizontal axis and the second
value indicates position on the vertical axis.

• Members of a vector are called its ’elements’. The maximum number of elements
of a vector is its ’dimension’. That is, a p-component or p-dimensional vector will
have p elements where the i-th element will indicate the position on the i-th axis.

• A p-component vector denoted by xp×1 can be represented as

xp×1 =


x1

x2
...
xp

 or

• The transpose of xp×1 is denoted by x′. or x1×p =
(
x1 x2 · · · xp

)
1×p

• Operations of Vectors: Let x =


x1

x2
...
xp

 be a p × 1 vector. If each element of x is
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multiplied by a scalar c (say), then we get a new vector, say y, where y =


cx1

cx2
...

cxp

.

Then y is called a scalar multiple of the vector x

• Vector Addition: Addition of 2 vectors is defined if both vectors are of the same
order/dimension.

Let x =


x1

x2
...
xp

 and y =


y1
y2
...
yp



then x + y =


x1 + y1
x2 + y2

...
xp + yp

 = z where the elements of z are the sum of the corre-

sponding elements of x and y.

Similarly, (x− y) is defined as


x1 − y1
x2 − y2

...
xp − yp

.

Similarly, subtraction of vectors is defined.

• Scalar Product: It is defined when two vectors are of the same order.

Scalar product of two vectors when defined is the sum of products of corresponding
elements of two vectors.

That is, if x =


x1

x2
...
xp

 and y =


y1
y2
...
yp

, the scalar product of x and y, defined as x′y

or y′x, is defined as

x′y =

p∑
i=1

xiyi

• Norm:
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The distance of a vector from its origin:

(OP )2 = (OC)2 + (PC)2

⇒ OP =
√

(OC)2 + (PC)2 =
√

x2 + y2.

– Two vectors are said to be orthogonal if their scalar product is zero.

– Norm of a vector is denoted by ||x||.A vector whose norm is unity is called a
’unit normed vector’.

• A set of vectors is said to be ’linearly independent’ if none of the vectors can be
linearly expressed by the remaining vectors or any one.
That is, the set of vectors x1, x2, . . . , xk will be called linearly independent if

l1x1 + l2x2 + · · ·+ lkxk = 0

implies
l1 = l2 = . . . = lk = 0 where li are scalers

For example, if l1x1 + l2y2 = 0, then x2 = − l1
l2
x1.

(1, 0, 0), (0, 1, 0), (0, 0, 1) is a set of linearly independent vectors in R3.

Vector Space: A set of vectors closed under scalar multiplication and vector addition.
Let V be a collection of vectors ai, i = 1, 2, . . .. Then V will be called a vector space if:

1. Cai ∈ V for all ai ∈ V , i = 1, 2, . . ., where C is a scalar.

2. ai + bi ∈ V for all ai, bi ∈ V , i = 1, 2, . . ..

Example: R2 : {(x, y) : x, y ∈ R}

Basis: A set of linearly independent vectors which span the vector space is called its
basis.
The number of basis of a vector space may not be unique. However, the number of vectors
in a basis of a vector space is unique.

Ex: e1
′ = (1, 0), e2

′′ = (0, 1) is a basis of R2{
e1

′ = (1, 0, 0), e2
′ = (0, 1, 0), e3

′ = (0, 0, 1)
}

is a basis of R3

Verify these examples (take any vector and express it using basis vectors).
Matrix and its Results:

Let A =

(
x
y

)
be any vector in the vector space R2.

5



Now, A can be expressed as:

xe′1 + ye′2
Where e′1 = (1, 0)

e′2 = (0, 1)

Now, xe′1 + ye′2

= x

(
1
0

)
+ y

(
0
1

)
=

(
x
0

)
+

(
0
y

)
=

(
x
y

)
= A.

Matrices are rectangular arrays of numbers. The number of rows by the number of
columns is called the order of the matrix.
Example:

A =

a11 a12 . . . a1n
...

. . .
...

am1 am2 . . . amn


Here A is an m× n matrix, i.e., A has m rows and n columns.
Each row and each column is a vector.

Vector Space generated by the rows of a matrix, say A, is called the Row Space of A,
denoted by R(A)
Vector Space generated by the columns of a matrix, say A, is called the Column Space
of A, denoted by C (A).
The number of linearly independent vectors in the row space of A is the row rank of A.
Similarly, the number of linearly independent vectors in the column space of A is the
column rank of A.
It can be proved that for a matrix A, Row Rank = Column Rank.
The number of linearly independent vectors (row/column) in a matrix is called its rank.
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Types of Matrices:

1. Square Matrix: The number of rows equals the number of columns.

2. Triangular Matrix: A square matrix where all the elements above or below the
principal diagonal are zero. For example:

A =

a11 0 0
a21 a22 0
a31 a32 a33

 (lower triangular)

B =

b11 b12 b13
0 b22 b23
0 0 b33

 (upper triangular)

3. Diagonal Matrix: A square matrix whose all elements other than the principal
diagonal are zero.

A =

a11 0 0
0 a12 0
0 0 a33


4. Identity Matrix: A diagonal matrix whose principal diagonal elements are unity or

one.

5. Symmetric Matrix: A square matrix is said to be symmetric if its mirror image
positional elements are the same.
The matrix A will be called a symmetric matrix if aij = aji.

6. Idempotent Matrix: A matrix B is said to be idempotent if B2 = B.

7. Inverse of a Matrix: If the multiplication of two matrices in either order results in
the identity matrix, then each one of the previous matrix are inverse of one another.
That is, if A and B are two matrices such that AB = BA = I, then A is the inverse
of B and vice versa. A−1 = B and B−1 = A.

8. Orthogonal Matrix:

• Transpose: The matrix obtained by transposing the rows and columns of a
matrix is known as the Transpose of the Matrix.
This means changing the rows to columns and columns to rows. Notation: A⊤

or A′

A Matrix ’ A ’ is said to be orthogonal if AA′ = A′A = I (Square).

9. Determinant of a Matrix: A value obtained from the matrix which determines
whether the inverse of a matrix exists or not.

A matrix whose determinant is zero is called a Singular Matrix.

Let A be a non-singular square matrix, then

A−1 =
Adj(A)

|A|
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where Adj(A) is the adjoint matrix of A,

which is the matrix obtained by transposing the cofactor of each element of A.

The cofactor of the element aij of A is (−1)i+j times the determinant of the matrix
obtained from A by deleting its ith row and its jth column,

which is equal to (−1)i+j times the minor of aij of A.

■ System of Linear Equations:

Ap×pxp×1 = bp×1 · · · (i)

If |A| ≠ 0, then x = A−1b
where x is a vector of unknown quantities whose values can be found out using (i).
Note that the solution is unique since A−1 is unique. The inverse of a matrix, if it
exists, is unique. It may happen that the system of linear equations is of the form

Ax = b

The system of linear equations will be called consistent if there exists at least one
solution of the system of linear equations. A system of linear equations is consistent if

Rank(A) = Rank(A : b)

If a system of linear equations is not consistent, then it will have no solution.
If the coefficient matrix of the system of linear equations is of full rank, i.e., its inverse
exists, then the system will have a unique solution.

If the coefficient matrix of the system of linear equations is not of full rank, then it will
have an infinite number of solutions. If b = 0, then the system is called a system of
’Homogeneous Equations’.

2x1 + 3x2 = 5

4x1 + 6x2 = 10

⇒
(
2 3
4 6

)(
x1

x2

)
=

(
5
10

)
A · x = b

where |A| = 0 and Rank(A) = Rank

((
2 3 : 5
4 6 : 10

))
= 1

So, the system of linear equations is consistent. Thus, it should have an infinite
number of solutions. (

2 3
4 6

)(
x1

x2

)
=

(
5
10

)
⇒
(

2 3
0 0

)(
x1

x2

)
=

(
5
0

)
⇒2x1 + 3x2 = 5

⇒ x1 =
5− 3x2

2

Let x2 = k,x1 =
1

2
(5− 3k)
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Solution of the system of equations:(
x1

x2

)
=

(
1
2
(5− 3x)

x

)
Now for an infinite choice of k, we have infinite solutions.

2x1 + 3x2 = 5

4x1 + 5x2 = 10

Check the consistency of the system of equations:(
2 3
4 5

)(
x1

x2

)
=

(
5
10

)
Rank(A) =

(
2 3
4 5

)
= Z = Rank

((
2 3 : 5
4 6 : 10

))
So, the system of linear equations is consistent since it is of full rank. Therefore, it has
a unique solution (its inverse exists).

det

(
2 3
4 5

)
= 10− 12 = −2, det

(
3 5
5 10

)
= 5.

det

(
2 5
4 10

)
= 20− 20 = 0

Clearly, there are 2 nonzero minors of order 2 of the augmented matrix. Hence the
rank of the augmented matrix is 2.

2x1 + 3x2 = 5

4x1 + λx2 = µ

For what value of λ and µ will the following system of linear equations have i) no
solution, ii) a unique solution, iii) infinite solutions

■ Eigenvalues and Eigenvectors of a Matrix:
Let An×n be a square matrix. Then eigenvalues of A are the solutions of the system of
equations

|A− λI| = 0

Eigenvectors xi of A corresponding to the eigenvalues λi, i = 1, 2, . . . of A satisfy
Axi = λixi.
Eigen vectors corresponding to distinct eigenvalues are linearly independent. Let

A =

(
2 3
4 5

)
. To find its eigenvalues we need to solve∣∣∣∣( 2 3

4 5

)
− λ

(
1 0
0 1

)∣∣∣∣ = 0

⇒
∣∣∣∣ 2− λ 3

4 5− λ

∣∣∣∣ = 0

⇒ (2− λ)(5− λ)− 12 = 0

⇒ λ2 − 7λ− 2 = 0

⇒ λ = 7.25 or λ = 0.25
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∴ Eigen vectors corresponding to the eigen value 7.25 are(
2− 7.25 3

4 5− 7.25

)(
x1

x2

)
=

(
0

0

)
⇒ −5.25x1 + 3x2 = 0

4x1 − 2.25x2 = 0

It may be noted that eigenvectors of a matrix can be converted to Orthogonal
eigenvectors through Graham-Schmidt orthogonalization process.
Let A be a symmetric matrix with eigenvalues λ1, λ2, . . . , λp and corresponding
orthogonal eigenvectors e1, e2, . . . , ep, then A can be expressed as:

A = λ1e1e
′
1 + λ2e2e

′
2 + . . .+ λpepe

′
p

=

p∑
i=1

λieie
′
i

This is also known as the spectral decomposition of the matrix A.

Take a matrix and find its spectral decomposition

A =

(
1 2
2 −2

)
|A− λI| = 0∣∣∣∣ 1− λ 2

2 −2− λ

∣∣∣∣ = 0

⇒ (1− λ)(−2− λ)− 4 = 0

⇒ λ2 + λ− 6 = 0

⇒ λ = −3, λ = 2

For λ = −3, Ax = λx:

⇒
(

1 2
2 −2

)(
x1

x2

)
= −3

(
x1

x2

)
⇒
(
x1 + 2x2

2x1 − 2x2

)
=

(
−3x1

−3x2

)
∴ x1 + 2x2 + 3x1 = 0

⇒ 4x1 + 2x2 = 0 and 2x1 − 2x2 + 3x2 = 0

⇔ 2x1 + x2 = 0

For λ = 2, Ax = λx:

⇒
(

1 2
2 −2

)(
x1

x2

)
=

(
2x1

2x2

)
⇒
(
−x1 + 2x2

2x1 − 4x2

)
=

(
0

0

)
∴ x1 = 2, x2 = 1

Now for λ = −3, norm of the eigen vectors is
√
12 + 22 =

√
5

Hence an eigenvector for λ = −3 is e′1 =

(
− 1√

5
,
2√
5

)
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P ′λP = ding (λ1λ2 . . . λp) where λ31λ2 . . . λp are eigen values of A and P is the orthogonal
matrix constructed by the corresponding eigenvectors e1, e2, . . . es the matrix A.

Similarly for λ = 2, norm of the eigen vector is
√
22 + 12 =

√
5 ∴ An eigenvector for

λ = 2 is ℓ′2 =
(
1/
√
5, 2√

5

)′
Hence a spectral decomposition of matrix A is

[
1 2
2 −2

]
=− 3

[
− 1√

5
2√
5

] [
− 1√

5
2√
5

]
+ 2

[
1√
5
2√
5

] [
1√
5

2√
5

]
= −3

[
1
5

−2
5

−2
5

4
5

]
+ 2

[
4
5

2
5

2
5

1
5

]
■ Spectral Decomposition, Eigenvalues, Eigenvectors.

Let A =

(
2

√
2√

2 1

)
Find the eigenvalues and eigenvectors of A.

⇒ A− λI =

 2− λ
√
2√

2 1− λ

 , let λ be an eigenvalue of matrix A by definition

⇒ det(A− λI)

A, then.

= (2− λ)(1− λ)− 2

= λ2 − 3λ+ 2− 2

= λ(λ− 3)

⇒ if det(A− λI) = 0 ⇒ λ = 0, 3

λ1 = 0, λ2 = 3

For λ1 = 0, let the eigenvector be x =
(
x1

x2

)
⇒
(

2− 0
√
2√

2 1− 0

)(
x1

x2

)
= 0

⇒ 2x1 +
√
2x2 = 0

⇒
√
2x1 + x2 = 0 ⇒ x1 =

−x2√
2

⇒ x2 = −
√
2x1

Also
Ax = λ1x

⇒
(
2x1 +

√
2x2√

2x1 + x2

)
=

(
0

0

)
.
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For λ2 = 3, the eigenvector is y =
(
y1
y2

)
Ay = λ2y

⇒
(
2y1 +

√
2y2√

2y1 + y2

)
=

(
3y1
3y2

)
⇒ y1 =

√
2y2 ⇒ y1 =

√
2y2√

2y1 = 2y2 ⇒ y2 =
y1√
2

Eigenvector for λ1 = 0 ⇒
(

x1

−
√
2x1

)
, x1 ∈ R

Eigenvector for λ2 = 3 ⇒

 y1
y1
1√
2

 , y1 ∈ R

based on the choice of x1 = aa11 , b1, eigenvectors will vary.
This system of equations has infinitely many solutions. We can transform them to
orthonormal eigenvectors by dividing with now.

e1 =

(− 1√
2
√
1.5

1√
1.5

)
, e2 =

(√
2√
3√
1√
3

)

e′1e2 =

(
−
√
2

3
+

√
2

3

)
= 0

∴ e1, e2 are orthonormal (for particular a1, b1)

ie. ∥e1∥ = ∥e2∥ = 1

Define
P =

(
e1 e2

)
=

(
− 1√

3

√
2√
3√

2√
3

1√
3

)

PAP ′ =

(
− 1√

3

√
2√
3√

2√
3

1√
3

)(
2

√
2√

2 1

)( − 1√
3

√
2√
3√

2√
3

1√
3

)

=

(
0 0√
6

√
3

)
·

(
− 1√

3

√
2√
3√

2√
3

1√
3

)

=

(
0 0
0 3

)
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PAP ′ =

(
λ1 0
0 λ2

)
⇒ AP ′ = P ′

(
λ1 0
0 λ2

)
[by premultiplying P ′ = P−1]

⇒ A = P ′
(

λ1 0
0 λ2

)
P [post multiplying P ]

⇒ A =

(
e′1
e′2

)
2×1

(
λ1 0
0 λ2

)(
e1 e2

)
⇒ A = [λ1e

′
1e1 + λ2e

′
2e2] [Spectral Decomposition]
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A quadratic form is an algebraic expression of order two in two variables. A typ-
ical quadratic form can be expressed as [a11x

2
1 + 2a12x1x2 + a22x

2
2]. The same may be

expressed as follows in matrix notation:

(
x1 x2

)( a11 a12
a12 a22

)(
x1

x2

)
a12 = a21 so,

(
x1 x2

)( a11 a22
a21 a22

)(
x1

x2

)

i.e., x′Ax where x is the vector of variables and A is called the matrix (coefficient
matrix) of the quadratic form. A is a symmetric matrix.

Example: Consider the quadratic form

4x2
1 + 2x1x2 + 4x2x1 + 6x2

2.

= 4x2
1 + 6x1x2 + 6x2

2

Matrix form
(
x1 x2

)( 4 3
3 6

)(
x1

x2

)
It may be noted that the given quadratic form can be expressed in Matrix notation

as follows as well (
x1 x2

)( 4 2
4 6

)(
x1

y2

)
⇒ x′Ax

⇒ x′ =
(
x1 x2

)
A1 =

(
4 2
4 6

)
x =

(
x1

x2

)
However, it may be noted that,
A is a symmetric matrix.
here A is not symmetric.

Since the nature of a quadratic form entirely depends on its coefficient matrix and it
is easier to work with a symmetric matrix, therefore, we shall always express a quadratic
form through a symmetric matrix.

A quadratic form may be classified into the following classes based on the eigenvalues
of matrix A:

1. Positive definite: x′Ax > 0. It happens when the coefficient matrix A is positive
definite.

2. Positive semidefinite: x′Ax ⩾ 0.

3. Negative definite: x′Ax < 0.

4. Negative semidefinite: x′Ax ⩽ 0.

5. Indefinile: some +, some-
no of ’+’eigen values - no of ’-’eigen values. = Signature of the Coeff Matrix
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A quadratic form x′Ax is said to be indefinite if the form is positive for some points x
and negative for others.

A quadratic form x′λx is:

• Positive definite if it is positive (> 0) for every x ̸= 0.

• Positive semidefinite if it is non-negative (≥ 0) for every x and there exist points
x ̸= 0 for which x′Ax = 0.

If x′Ax is positive definite/semidefinite, then x′(−A)x is negative definite/negative semidef-
inite.

A symmetric matrix A is often said to be positive definite, positive semidefinite,
negative definite, etc., if the respective quadratic form x′Ax is positive definite, positive
semidefinite, etc.

Example:

1. F = 3x2
1 + 5x2

2

F = 2x2
1 + 3x2

2 + x2
3

F = x2
1 are some examples of positive definite quadratic forms in 2,3,1 variables,

respectively.

2. F = 4x2
1+x2

2− 4x1x2+3x2
3 = (2x1 − x2)

2+3x2
3 is a positive semidefinite quadratic

form in 3 variables since it is never negative, and its value becomes zero if x2 = 2x1

and x3 = 0.

(Homework) Find the associated coefficient matrix of the given quadratic forms in
the above examples. Comment on the nature of the quadratic forms and the rank of the
matrices.
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Homework
(1)

F = 3x2
1 + 5x2

2

=
(
x1 x2

)( 3 0
0 5

)(
x1

x2

)
≈ x′Ax

A =

(
3 0
0 5

)
is a full rank matrix.

Hence, the determinant of A is non-zero.
All the eigenvalues of A are positive (3 and 5).
∴ the quadratic form is positive definite.

F = 2x2
1 + 3x2

2 + x2
3

=
(
x1 x2 x3

) 2 0 0
0 3 0
0 0 1

 x1

x2

x3

 [x′Ax]

A is a full rank matrix.
All the eigenvalues are positive.
Therefore, it is positive definite.

(2)
F = 4x2

1 + x2
2 − 4x1x2 + 3x2

3

=
(
x1 x2 x3

) 4 −2 0
−2 1 0
0 0 3

 x1

x2

x3


Here, the coefficient matrix A =

 4 −2 0
−2 1 0
0 0 3

 is a singular matrix since its rank

is Rank(A) = 2.
[R1 = −2R2]

Hence, out of 3 eigenvalues of A, two are nonzero and the other one is zero.
Therefore, A is a positive semidefinite matrix, so is x′Ax.
* Maxima - minima of Quadratic form based on λ.
* Principal Components - choice.

λ1 ⩾ λ2 ⩾ . . . ⩾ λp ⩾ 0

V (Y1) ⩾ V (Y2) ⩾ . . . ⩾ Var(Yp)

[
we have formed Y1, . . . , Yp

using X1, . . . , Xn

]
Var(Y1) = a′1Σa1

Here Σ is the largest eigenvalue λ1.
a1 is a eigen vector using λ1.

2nd Method.
Var(X1) = a1

′Σa1

Σ =

(
σ11 σ12

σ21 σ22

)
16



Now,
(
a11 a12

)( σ11 σ12

σ21 σ22

)(
a11
a12

)
We have to maximize Var(Y2) −→ no feasible solution, unbounded solution. for

feasible solution aia1 = 1 i.e., norm vector.
Define F = a1

′Σa1 − λ(a1
′a1 − 1) (Lagrange Multiplier) Now,

∂F1

∂a1
= 0 ⇒ 2Σa1 − 2λa1 = 0

⇒ (Σ− λI)a1 = 0 · · · (∗)

∴ (Σ− λI) must be singular to have a nonzero solution of (∗)

∴ |Σ− λI| = 0

From (Σ− λI)a1 = 0

⇒ Σa1 = λa1

⇒ a1
′Σa1 = a1

′λa1

⇒ V ar(Y1) = λ asa1
′a1 = 1

⇒ largest eigenvalue of |Σ− λI| = 0

for 2nd PC −→ F ∗
1 = a′2Σa2 − λ(a′2a2 − 1)− µ(a′2a2)

■ Principal Component Analysis:

V (X) =

p×p∑

From X we came to Y =


y1
y2
...
yp

 where Yi’s are linear combinations of Xi’s.

V (Y ) = Diag(λ1, λ2, . . . , λp) = Λ

where λ1 ⩾ λ2 ⩾ · · · ⩾ λp

Again, we know that any symmetric matrix can be diagonalized. Similarly, the var-
covariance matrix can also be diagonalized.

AΣA′ = Λ

where A is an orthogonal matrix constructed by orthonormal eigenvectors

(a1, a2 . . . , ap) corresponding to the eigenvalues of Σ

(λ1, λ2, . . . , λp).

Therefore, the total system variability can be expressed as:

Total Variance = Var(xi) = tr(Σ)

= tr(A′ΛA)

= tr(ΛAA′) [ tr(AB) = tr(BA)]

= tr(Λ)

=

p∑
i=1

λi

17



Hence we can compute the proportion of system variability explained by each PC as
follows:

Variance explained by 1st PC =
λ1∑p
i=1 λi

Variance explained by 2nd PC =
λ2∑p
j=1 λj

and in general, variance explained by the i-th PC is:(
λi∑p
i=1 λi

)
Since one of the major objectives of PCA is dimension reduction, then one can reduce

the dimension, i.e, he/she may consider m(≤ p) PC’s to be retained for future analysis -
using the cumulative proportion of total system variability explained by the retained PC
’s. clearly the cumulative proportion of system variability explained by the first two PC
’s is equal to λ1+λ2∑p

i=1 λi

similarly the cumulative proportion of system variability explained by first m PC ’s

⇒
(

λ1+λ2+...+λm∑p
i=1 λi

)
.

Generally, if more than 80% of the total system variability is explained by the first m
PC’s, then m number of PCs, i.e., Y1, Y2, . . . , Ym, are retained out of the p PC’s derived
from the data.

It may also be noted that the satisfaction level of the cumulative proportion of the
total system variability explained depends upto the analyzer, i.e. the quantity ” 80% ”
is not a fixed value.

Example:
Consider the following var-cov matrix and find the PC ′s. Also, explain the proportion
of variability explained by each PC and comment on the number of PCs to be retained
if someone wishes to explain at least 80% of the total system variability.

Σ =

 1 −2 0
−2 5 0
0 0 2


⇒ By looking at Σ, we can see

|Σ| = 2(5− 4) = 2 ̸= 0 ⇒ Σ is non-singular

Let λ1, λ2, λ3 be the eigenvalues of Σ, i.e., solve |Σ− λI| = 0.

Σ− λI =

 1− λ −2 0
−2 5− λ 0
0, 0 −2− λ
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⇒ |Σ− λI| = 0

⇒ (2− λ)[(1− λ)(5− λ)− 4] = 0

⇒ (2− λ)[λ2 − 6λ+ 5− 4] = 0

⇒ (λ− 2)[λ2 − 6λ+ 1] = 0

∴ λ = 2

or

λ =
6±

√
36− 4

2

= 3± 2
√
2

⇒ λ1 = 3 + 2
√
2 = 5.828, λ2 = 2, λ3 = 3− 2

√
2 = 0.172

and λ1 > λ2 > λ3

∴ Σa1 = λ1a1

ai =

 ai1
ai2
ai3

 , i = 1, 2, 3

⇒

 1 −2 0
−2 5 0
0 0 2

 ·

 a11
a12
a13

 =

 5.828a11
5.828a12
5.828a13


⇒ −4.828a11 − 2a12 = 0

⇒ 2a11 − 0.828a12 = 0.

⇒ a11 + 0.414a12 = 0

a13 = 0

∴ if a11 = 1 ⇒ a12 = −2.415

∴ a1 =

 1
−2.415

0

 ;
∥a1∥ =

√
12 + (−2.415)2

= 2.613(Normed)

e1
=

 0.38
−0.92

0


Hence the first PC is Y1 = 0.38X1 − 0.92X2
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For, λ2 = 2  1 −2 0
−2 5 0
0 0 2

 a21
a22
a23

 =

 2a21
2a22
2a23


⇒ a21 − 2a22 = 2a21

⇒ a21 + 2a22 = 0

− 2a21 + 5a22 = 2a22 ⇒ 2a21 = 3a22

− 2a23 = 2a23

one such eigenvector is

 0
0
1


Do the sames for the following var-cov matrix(

1 4
4 100

)
(1− λ)(100− λ)− 16 = 0

⇒ λ2 − 101λ+ 100− 16 = 0

⇒ λ2 − 101λ+ 84 = 0

⇒ λ =
101±

√
10201− 336

2
⇒ λ1 = 100.16, λ2 = 0.84(
1 4
4 100

)(
a1
a2

)
=

(
100.16a1
100.16a2

)
⇒ a1 + 4a2 = 100.16a1

4a1 + 100a2 = 100.16a2

⇒ −99.16a1 + 4a2 = 0

⇒ 4a1 − 0.16a2 = 0

⇒ a1 − 0.04a2 = 0

Let a2 = 1

a1 = 0.04

∥a∥ =
√
12 + 0.042

∴

(
0.04

1

)
= e1

for λ2 = 0.84

b1 + 4b2 = 0.84b1

4b1 + 100b2 = 0.84b2

∴ 0.16b1 + 0.46b2 = 0

& 4b1 + 99.16b2 = 0

⇒ b2 = −0.04b1

∴

(
1

−0.04

)
= e2
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y1 = 0.04x1 + 0.999x2, y2 = 0.999x1 − 0.04x2 PC ′s

Convert the above covariance matrix into correlation matrix

Σ =

(
1 4
4 100

)
=⇒ R =

(
1 0.4
0.4 1

)
|R| = 1− 0.42

= (1 + 0.4)(1− 0.4) =
1.4

λ1

× 0.6

λ2

∴ Ra1 = λ1a1

⇒
(

1 0.4
0.4 1

)(
a1
a2

)
=

(
1.4a1
1.4a2

)
⇒ a1 + 0.4a2 = 1.4a1

0.4a1 + a2 = 1.4a2

⇒ 0.4a2 = 0.4a1 ⇒ a1 = a2

For a normal vector

a21 + a22 = 1

⇒ a1 = 0.707 = a2

Y1 = 0.707x1 + 0.707x2

Ra2 = λ2a2

⇒
(

1 0.4
0.4 1

)(
a1
a2

)
=

(
0.6a1
0.6a2

)
⇒ a1 + 0.4a2 = 0.6a1

⇒ a1 + a2 = 0

Also a21 + a22 = 1

⇒ a1 = 0.707

∴ a2 = −0.707

∴ Y2 = 0.707x1 − 0.707x2

Correlation Matrix
Covariance Matrix of standardized variables.
Therefore, we see that principal components obtained from the covariance matrix and
correlation matrix of the same data are not the same. It might also be noted that the
correlation matrix is the covariance matrix of the standardized variables. For the above
data, in the case of the covariance matrix, the first principal component explains
100.16
101

= 0.992 or 99.2% of the total system variability, i.e., it explains almost the entire
system variability. This may also be pointed out that in the first PCs obtained from the
Covariance matrix, the contribution of each variable differs significantly. For example,
the first PC is dominated by the 2nd variable (X2), and the 2nd PC is dominated by
the 1st variable(X1). However, if we look at the PC’s obtained from the correlation
matrix (X1), the first PC explains 1.4

2
= 0.7 or 70% of the total system variability. More

interestingly, in the PC’s obtained from the correlation matrix, both variables X1 and
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X2 contribute equally. Therefore, it may be concluded that in PC’s obtained from the
covariance matrix, variables with larger variance dominates, and in P’Cs obtained from
R, dominance of the variables with larger numerical variance gets neutralized. Hence,
finding out PC’s from the correlation matrix is preferable. Standardization of variables
is also recommended to deal with the units of different variables..

Σ =

 σ2 ρσ2 0
ρσ2 σ2 ρσ2

0 ρσ2 σ2


be the variance- covariance matrix − 1√

2
< ρ < 1√

2
Clearly, the correlation matrix

R =

 1 ρ 0
ρ 1 ρ
0 ρ 1


To find the PC’s of R, the following equation is to be solved:

|R− λI| = 0

⇒

∣∣∣∣∣∣
1− λ ρ 0
ρ 1− λ ρ
0 ρ 1− λ

∣∣∣∣∣∣ = 0

⇒(1− λ)
[
(1− λ)2 − ρ2

]
− ρ2(1− λ) = 0

⇒(1− λ)
[
(1− λ)2 − 2ρ2

]
= 0

∴λ = 1 or 1− λ = ±
√
2ρ

⇒λ = 1 or λ = 1±
√
2ρ

Therefore λ1 = 1, λ2 = 1 +
√
2ρ, λ3 = 1−

√
2ρ are the eigenvalues.

let us try to find eigenvector a, b, c corresponding to λ1, λ2, λ3

For, λ1 = 1 0 ρ 0
ρ 0 ρ
0 ρ 0

 a1
a2
a3

 =

 0
0
0


⇒ ρa2 = 0 ⇒ a2 = 0

⇒ ρa1 + ρa3 = 0 ⇒ a1 + a3 = 0 ⇒ a1 = −a3 & a21 + a22 + a23 = 0

∴ The normed eigenvector

22



e1 =

 1/
√
2

0

−1/
√
2

 ,

For λ2 = 1 +
√
2ρ −

√
2ρ ρ 0

ρ −
√
2ρ ρ

0 ρ −
√
2ρ

 b1
b2
b3

 =

 0
0
0


⇒ −

√
2ρb1 + ρb2 = 0 ⇒ b2 =

√
2b1

⇒ ρb1 −
√
2ρb2 + ρb3 = 0,

⇒ ρb2 =
√
2ρb3

⇒ b2 =
√
2b3

∴ b21 + b22 + b23 = 1

⇒ b22
2
+ b22 +

b22
2

= 1

⇒ b2 =
1√
2

∴ b1 =
1

2
, b3 =

1

2
.

∴ e2 =

 1/2

1/
√
2

1/2


For λ3 = 1−

√
2ρ √
2ρ ρ 0

ρ
√
2ρ ρ

0 ρ
√
2ρ

 c1
c2
c3

 =

 0
0
0


⇒

√
2ρc1 + ρc2 = 0 ⇒ −

√
2c1 = c2

ρc1 +
√
2ρc2 + ρc3 = 0 ⇒ c1 + c3 = −

√
2c2

ρc2 +
√
2ρc3 = 0 ⇒ c2 = −

√
2c3

and c21 + c22 + c23 = 1

∴ e3 =

 −1/2

1/
√
2

1/2



∴ e1, e2, e3 are also mutually orthogonal.
Therefore the corresponding PC’s are with original variables x1, x2 and x3
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Y1 =
1√
2
X1 −

1√
2
X3

Y2 =
1

2
X1 +

1√
2
X2 +

1

2
X3

Y3 = −1

2
X1 +

1√
2
X2 −

1

2
X3

Note that if ρ > 0, then the 1st PC would be Y2. Hence the revised PC:

Y(1) =
1

2
X1 +

1√
2
X2 +

1

2
X3

Also, if ρ < 0, then the 1st PC would be Y3. Hence the revised PC:

Y(1) = −1

2
X1 +

1√
2
X2 −

1

2
X3

The above dispersion matrix can also be for a p-variate random vector, and in that
case, we have the following form of the dispersion matrix:

Σ =


σ2 ρσ2 ρσ2 · · · ρσ2

ρσ2 σ2 ρσ2 · · · ρσ2

...
...

...
. . .

...
ρσ2 ρσ2 ρσ2 · · · σ2


If the above covariance matrix is converted into the correlation matrix, we would get

the following:

P =

 1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ ρ · · · 1


|P | = (1− ρ)p−1[1 + (p− 1)ρ]

To find PC’s when we have the above correlation matrix,
find eigenvalues and eigenvectors.

λ1 = 1− p, λ2 = 1− p, . . . , λp−1 = 1− p

λp = 1 + (p− 1)ρ.

Rx = λpx

⇒ (R− λpI)x = 0

⇒


1− 1− (p− 1)ρ ρ ρ · · · ρ

ρ 1− 1− (p− 1)ρ ρ · · · ρ
...

...
. . .

...
...

ρ ρ ρ · · · 1− 1− (p− 1)ρ

·


x1

x2
...
...
xp

 =


0
0
...
...
0
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⇒


(1− p)ρ ρ ρ · · · ρ

ρ (1− p)ρ ρ · · · ρ
...

...
. . .

...
...

ρ ρ ρ · · · (1− p)ρ

 ·


x1

x2
...
...
xp

 =


0
0
...
...
0


For case of computation let p=3

Then

−2ρ ρ ρ
ρ −2ρ ρ
ρ ρ −2ρ

x1

x2

x3

 =

0
0
0


⇒ x2 + x3 = 2x1

x1 + x3 = 2x2

x1 + x2 = 2x3

∴ x1 = x2 = x3

Therefore, the required eigenvector is k
(
1 1 1

)′
. For k = 1, the normalized

eigenvector is 1√
3
(1, 1, 1).

Hence, generalizing this, we can say that the normalized eigenvectors for the eigenvalue

λ = 1 + (p− 1)ρ are e1 =
(

1√
p
, 1√

p
, . . . , 1√

p

)
.

Now, for the eigenvalue λ = 1−ρ, the eigenvector can be obtained from the equation,
1− 1 + ρ ρ · · · ρ

ρ 1− 1 + ρ · · · ρ
...

...
. . .

...
ρ ρ · · · 1− 1 + ρ



x1

x2
...
xp

 =


0
0
...
0


⇒ ρx1 + ρx2 + · · ·+ ρxp = 0

⇒ x1 + x2 + . . .+ xp = 0.

It may also be noted that λ = 1− p has multiplicity (p− 1) i.e. we need to find (p− 1)
such orthonormal vectors satisfying the condition that the sum of all components of each
vector is zero.
Hence, the following set of vectors would be a good choice:

e2
′ =

(
1√
2
,
1√
2
, 0, . . . , 0

)′

e3
′ =

(
1√
2× 3

,
1√
2× 3

,
−2√
2× 3

, 0, . . . , 0

)′

...

ei
′ =

(
1√

i(i− 1)
, · · · , −(i− 1)√

i(i− 1)
, 0, . . . , 0

)′

...

ep
′ =

(
1√

p(p− 1)
, · · · , −(p− 1)√

p(p− 1)

)′
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Elmhirst transformation
Total system variability = tr(R) = P . If ρ > 0, then λ = 1 + (p − 1)ρ is the largest
eigenvalue. Hence, the corresponding orthonormal eigenvector e1 could serve as the vector
of 1st PC:

Y1 = e1
′X =

1
√
p
X1 +

1
√
p
X2 + · · ·+ 1

√
p
Xp.

The proportion of system variability explained by the 1st PC is = 1+(p−1)ρ
p

= ρ+
(

1−ρ
p

)
Write down the other PC ′s for e2

′, e3
′, . . . , e1

′. Find system. Variability for the PC’s. By
borrowing the idea from Elmhirst transformations, we define the following PC’s:

Y2 =
1√
2
X1 −

1√
2
X2

Y3 =
1√
2× 3

X1 +
1√
2× 3

X2 −
2√
2× 3

X3

...

Yp =
1√

p(p− 1)
X1 +

1√
p(p− 1)

X2 + · · · − (p− 1)√
p(p− 1)

Xp

The proportion of system variance explained by rest of these (p−1) PC’s individually

is
[
1−p
p

]
, which is less than the proportion explained by its PC by the amount p.
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Let the Variance-Covariance Matrix be

Σ =


σ2 0 0 · · · 0
0 σ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2


Find the PCs and interpret the results.
■ The Number of PC’s
Though we compute p PC’s Y1, Y2, . . . , Yp corresponding to the p-component vector of
variables Xp∗1 = (X1, X2, . . . , Xp)

′. But it is always a prime issue to decide on how
many PC’s should be retained to get the advantage of dimension reduction. Although
the cumulative proportion of system variability explained by the first few PC’s gives us
a way to decide on the number of PC’s to be retained. Generally, if the first K PC’s
explain more than 80% of the total system variability, then out of p PC’s, k(≤ p) PC’s
are retained. However, there is a graphical way to determine the number of PCs to be
retained, known as Scree Plot.

A Scree plot of λ̂(i) is a plot of the ith sample eigenvalue vs. i. To determine the
appropriate number of PC’s, we look for an elbow (bend) in the scree plot.

The number of components (PC’s) is taken to be the point at which the remaining
eigenvalues are relatively small and all about the same size as the first.

An example of a scree plot with 4 PCs. In this figure, it may be noted that an elbow
occurs near the 2 i.e., the eigenvalues after λ̂(2) are relatively small and about the same
size. In this case, it appears, without any other evidence, that 2 sample PC’s effectively
summarize the total sample variance.

In reality, we do not have the population var-cor matrix; since we have samples, we
have to work on the sample covariance matrix. Therefore, we generally get sample eigen-
values and corresponding eigenvectors from the sample covariance matrix. Obviously, as
the sample changes, so do the sample eigenvalues and sample eigenvectors.

Hence, we need to know the large sample properties of λ̂(i) and ê(i) (sample eigenvec-

tor). Currently available results concerning large sample intervals for λ̂(i) and ê(i) assume
that the observations x1, x2, . . . , xn are a random sample from a normal population. It
must also be assumed that the (unknown) values of Σ are distinct and positive so that

λ(1) > λ(2) > · · · > λ(p) > 0 and (t-rest σ2
1 ̸= σ2

2) (unknown).
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The one exception is the case where the number of equal eigenvalues is known. Usually,
the conclusions for distinct eigenvalues are applied unless there is a strong reason to
believe that Σ has a special structure that yields equal eigenvalues. Even when the
normal assumption is violated, the confidence intervals obtained in this manner still
provide some indication of the uncertainty in λ̂i and êi.

Anderson and Girshick have established the following sample distribution theory for

the eigenvalues λ̂ =
(
λ̂1, λ̂2, . . . , λ̂p

)
and eigenvectors ê1, ê2, . . . , êp of S.

(1) Let Λ be the diagonal matrix of eigenvalues λ̂1, λ̂2, . . . , λ̂p of Σ. Then
√
n(λ̂ − λ) is

approximately Np

(
0
∼
, 2λ2

)
.

(2) Let Ei = λi

∑p
k=1
k ̸=i

λk

(λk−λi)
2 ek ek

′. Then
√
n(êi − êi) is approximately Np(0, E).

(3) Each λ̂i is distributed independently of the elements of the associated êi.
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